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Abstract

In this paper, we establish the well-posedness of stochastic heat
equations on moving domains, which amounts to a study of infinite
dimensional interacting systems. The main difficulty is to deal with
the problems caused by the time-varying state spaces and the
interaction of the particle systems. The interaction still occurs
even in the case of additive noise. This is in contrast to stochastic
heat equations in a fixed domain.
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Introduction

We are concerned with the well-posedness of stochastic heat
equations driven by multiplicative noise on a moving domain,
which is given as follows,
∂u(t, x)

∂t
= ∆tu(t, x) + σ

(
t, u(t, x)

)∂2W (t, x)

∂t∂x
for (t, x) ∈ OT , (1)

u(t, x) = 0 for x ∈ ∂It ,
u(0, x) = u0(x) for x ∈ I0.

Here OT = ∪
0≤t≤T

{t} × (0, at) is a non-cylindrical time-space

domain, a : [0,T ]→ (0,+∞) is a continuously differentiable
function, ∆t stands for the Dirichlet Laplacian operator on

It := (0, at) with boundary ∂It = {0, at}, and ∂2W (t,x)
∂t∂x stands for a

space-time noise specified later.
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Introduction

The classical heat equation, i.e. equation (1) with σ ≡ 0 and
It ≡ I0, describes the evolution of the heat flow on a fixed domain.
The solution u(t, x) is the heat density at position x ∈ I0 and time
t ∈ [0,T ] with initial density u0(x). In the stochastic setting, the
noise term represents a random internal/external heat source. The
equation (1) describes the time evolution of the heat density in a
domain moving with time and with a time-dependent random heat
source.
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Introduction

To solve deterministic PDEs on time-varying domains, there are
mainly two approaches in the literature. One is called the
“diffeomorphism method”, which transforms the original PDEs on
the moving domain into PDEs on a flat domain via a family of
diffeomorphisms. Although the new PDEs are on a fixed domain,
they have much higher nonlinear (complex) terms than the original
PDEs. The other is called the “penalty method”. The PDEs are
solved by adding penalty terms and taking the limits.
For the stochastically-forced equations on time-varying domains,
the problem becomes much more delicate because of the
singularities introduced by the noise term. There are very few
results on the well-posedness of stochastic partial differential
equations on moving domains.
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Introduction

We refer the reader to a recent paper [3] by some of the authors of
this paper, in which the authors established the well-posedness of
stochastic 2D Navier-Stokes equations on a time-dependent
domain driven by an additive noise. In that paper, the
“diffeomorphism method” has been adopted. However, using this
method, it seems very difficult to build the Itô formula for the
solutions, and to solve the case of multiplicative noises. Similar
problems arise when one applies the “penalty method”. The
methods mentioned above are suitable to solve PDEs on
time-varying domains, but it seems less ineffective when one uses
them to deal with the case of the stochastically-forced equations.
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Introduction

The purpose of this paper is to establish the well-posedness of
stochastic heat equations driven by multiplicative noise on one
dimensional moving domains. We use the Galerkin method,
commonly used for (stochastic) PDEs on fixed domains, but it
seems that this is the first time to use the method to handle
stochastic equations on moving domains, even for deterministic
equations on moving domains. Compared with the case of fixed
domains, new essential difficulties appear. For example, the
eigenbasis of time-dependent Laplacian ∆t is dependent on t.
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Introduction

Using the evolving eigenbasis of time-dependent Laplacian, it turns
out that the problem becomes a study of the well-posedness of an
infinite interacting particle system. We then use finite dimensional
approximations. Through proving the tightness of the laws of the
approximating solutions, we first obtain the existence of a
probabilistic weak solution to equation (1) and then the
well-posedness of strong solutions by combining the pathwise
uniqueness and Yamada-Watanable theorem. The main difficulty is
to deal with the problem caused by the time-varying state space
and the interaction of the particle systems. We notice that the
corresponding system is still interacting even in the case of additive
noise. This is in contrast to stochastic heat equations on a fixed
domain.
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Assumptions and main results

We assume that the domain It deforms in time t in a continuously
differentiable way, more precisely,

Assumption I.
There exists a C1 function a : [0,T ]→ (0,∞) such that
It = (0, at), ∀ t ∈ [0,T ].
In the following, the derivative of at is denoted by a′t .
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Assumptions and main results

Let L2(It) be the space of all square-integrable functions on It and
H1

0(It) the closure of the space of all smooth functions compactly
supported in It under the norm

‖u‖H1
0(It)

= ‖∂xu‖L2(It).

For simplicity, ∀ t ≥ 0, we write ‖ · ‖L2(It) as | · |t , (·, ·)L2(It) as
(·, ·)t , ‖ · ‖H1

0(It)
as ‖ · ‖t , and (·, ·)H1

0(It)
as 〈·, ·〉t . Sometimes we

will also write L2(It) and H1
0(It) as Ht and Vt respectively.
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Assumptions and main results

Now we introduce the function spaces that the solution belongs to.
Fix a constant L such that L > sup0≤t≤T at , the function space
L2(It) can be isometrically embedded into H := L2 ((0, L)) by
setting f (t) ≡ 0 for t ∈ (at , L) for any f ∈ L2(It).

Define

X :=
{
f ∈ C ([0,T ];H) , f (t) ∈ L2(It), ∀ t ∈ [0,T ]

}
equipped with the norm

‖f ‖X = sup
0≤t≤T

|f (t)|t .

X is a Banach space, isometrically embedded into C ([0,T ];H).
Similarly, we can isometrically embed H1

0(It) into V := H1
0 ((0, L))

by setting the functions in H1
0(It) to be zero outside the interval It .

This extension is well-defined since the functions in H1
0(It) vanish

at the boundary.
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Assumptions and main results

We define the space:

Y :=
{
f ∈ L2

(
[0,T ];H1

0((0, L))
)
, f (t) ∈ H1

0(It) a.e. t ∈ [0,T ]
}

equipped with the norm

‖f ‖2Y =

∫ T

0
‖f (t)‖2tdt.

Y is a Hilbert space, isometrically embedded into L2 ([0,T ];V).
We will write ‖ · ‖H, (·, ·)H, ‖ · ‖V, (· , ·)V as | · |, (· , ·), ‖ · ‖ 〈·, ·〉,
respectively.
Analogously, we introduce the space:

Z :=
{
f ∈ L2 ([0,T ];H) , f (t) ∈ L2(It) a.e. t ∈ [0,T ]

}
equipped with the norm

‖f ‖2Z =

∫ T

0
|f (t)|2tdt.
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Assumptions and main results

For the Dirichlet Laplacian ∆t on It , there exists an orthonormal
eigensystem

{
λk(t), ek(t)

}
k≥1 on Ht given by

λk(t) = −
(
kπ

at

)2

; ek(t, x) =

√
2

at
sin

kπx

at
, x ∈ It . (2)

{ek(t)}k∈N is an orthonormal basis of Ht and also an orthogonal
basis in Vt .

Take a sequence of independent standard real-valued Brownian
motions {Bk}k≥1 on a filtered probability space (Ω,F , {Ft}t≥0,P)
satisfying the usual conditions, and an orthonormal basis {fk}k≥1
of L2

(
(0, L)

)
, then we introduce a cylindrical Brownian motion W

on H given by

Wt :=
∞∑
k=1

fkB
k
t , t ≥ 0.
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Assumptions and main results

Now we give the assumptions on the mapping σ appearing in the
stochastic heat equation (1). Let σ : [0,T ]×H→ L2(H,H) be a
Borel measurable mapping, where L2(U1,U2) denotes the space of
Hilbert-Schimdit operators from a Hilbert space U1 to another
Hilbert space U2 equipped with the usual Hilbert-Schmidt norm
‖ · ‖HS(U1,U2). When there is no danger of causing ambiguity, we
write ‖ · ‖HS = ‖ · ‖HS(U1,U2).

Assumption II We assume that σ is measurable and there is a
positive constant K > 0 such that, for any s ∈ [0,T ] and
u, v , h ∈ Hs ,

(i) ‖σ(s, u)− σ(s, v)‖HS ≤ K‖u − v‖H;

(ii) ‖σ(s, u)‖HS ≤ K (‖u‖H + 1);

(iii) σ(s, h) ∈ L2(H,Hs).
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Assumptions and main results

The stochastic integral σ
(
t, u(t)

)
dWt is understood as

σ
(
t, u(t)

)
dWt =

∞∑
i=1

σ
(
t, u(t)

)
fkdBk

t .

Denote the time-derivative ∂sϕ(s, x) by ϕ′(s, x). Recall the
definition of OT in Section 1, we have the following definition of
the solution to (1).
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Assumptions and main results

Definition
u ∈ X a.s. is a solution of equation (1) if it is predictable and for
∀ t ∈ [0,T ] and ϕ ∈ C∞0 (ŌT ) =

{
g ∈ C∞(ŌT ) :

g(t, 0) = g(t, at) = 0,∀t ∈ [0,T ]
}

,∫ at

0
u(t, x)ϕ(t, x)dx −

∫ a0

0
u0(x)ϕ(0, x)dx

−
∫ t

0

∫ as

0
u(s, x)ϕ′(s, x)dxds

=

∫ t

0

∫ as

0
u(s, x)∆sϕ(s, x)dxds +

∫ t

0

(
ϕ(s), σ

(
s, u(s)

)
dWs

)
H
a.s.

(3)
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Assumptions and main results

Now we are ready to state the main result.

Theorem
For a deterministic function u0 ∈ L2 (I0), there exists a unique
solution u ∈ L2(Ω;X ∩ Y) to equation (1).
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Approximating solutions

In this part, we will provide a number of uniform estimates for the
approximating solutions. Moreover, we will show that the
approximating solutions form a Cauchy sequence on a new
probability space. This plays an important role in the proof of the
main result.

To formulate the appropriate approximating equations, we start
with some formal calculations. Expand the solution u (if it exists)
of equation (1) with respect to the eigenbasis ek(s, x), k ∈ N (see
(2)) to get

u(s, x) =
∞∑
k=1

(
u(s), ek(s)

)
s
ek(s, x) =

∞∑
k=1

Ak(s)ek(s, x),

here

Ak(s) :=
(
u(s), ek(s)

)
s

=

∫ as

0
u(s, x)ek(s, x)dx .
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Approximating solutions

Taking the eigenbasis ek(t, x), k ∈ N as the test functions in (3), it
follows that

Ak(t)− (u0, ek(0))0 −
∫ t

0

∫ as

0
u(s, x)e ′k(s, x)dxds

=

∫ t

0
λk(s)Ak(s)ds +

∫ t

0

(
ek(s), σ

(
s, u(s)

)
dWs

)
H
.

A formal calculation yields that

Ak(t)− (u0, ek(0))0 −
∞∑
j=1

∫ t

0
Aj(s)bjk(s)ds (4)

=

∫ t

0
λk(s)Ak(s)ds +

∫ t

0

(
ek(s), σ

(
s,
∞∑
j=1

Aj(s)ej(s)
)
dWs

)
H
,

where

bjk(s) =

∫ as

0
ej(s, x)e ′k(s, x)dx =

{
(−1)j+k · a

′
s

as
· 2jk
j2−k2 , j 6= k ,

0, j = k .

(5)
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Approximating solutions

This suggests to consider the following interacting systems of
stochastic differential equations: for k = 1, · · · , n,

An
k(t)− (u0, ek(0))0 −

n∑
j=1

∫ t

0
An
j (s)bjk(s)ds (6)

=

∫ t

0
λk(s)An

k(s)ds +

∫ t

0

(
ek(s), σ

(
s,

n∑
j=1

An
j (s)ej(s)

)
dWs

)
H
.

Note that the SDE (6) has a unique Rn-valued continuous solution(
An
1(t),An

2(t), ...,An
n(t)

)
since all the coefficients are Lipschitz

continuous. Set

un(t, x) :=
n∑

k=1

An
k(t)ek(t, x). (7)
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Approximating solutions

We begin with some moment estimates of {un}n≥1 in the space
X ∩ Y.
Proposition 1 There exists a positive constant C1 > 0 such that

sup
n∈N

E
[

sup
0≤t≤T

∣∣un(t)
∣∣2
t

+

∫ T

0

∥∥un(t)
∥∥2
t
dt
]
≤ C1.

The Proposition is proved using essentially the skew-symmetry of
the matrix bjk(s) and the Ito formula for An

k(t).
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Approximating solutions

We also have the uniform estimate of higher order moments.
Corollary 2 For all p > 1 there exists a positive constant Cp,K ,T

such that
sup
n∈N

E
{

sup
0≤t≤T

∣∣un(t)
∣∣2p
t

}
≤ Cp,K ,T ,

sup
n∈N

E
{(∫ T

0
‖un(t)‖2tdt

)p}
≤ Cp,K ,T .
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Approximating solutions

To prove the tightness of the laws of un, n ≥ 1, we recall the
following lemma characterizing the compact subsets of Z proved in
[3].

Let Ji denote a family of equicontinuous real-valued functions on
[0,T ]. For a positive constant N, set KN,J := ∩∞i=1 KN,Ji , where

KN,Ji =

{
g ∈ X ∩ Y : sup

0≤t≤T
|g(t)|t ≤ N,

∫ T

0
‖g(t)‖2tdt ≤ N,

gi =
{
gi (t) :=

(
g(t), ei (t)

)
t
, t ∈ [0,T ]

}
∈ Ji

}
.

Lemma 3. KN,J is precompact in Z.
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Approximating solutions

The next result gives the tightness of {L(un)}n≥1, the family of
distributions of {un}n∈N.

Proposition 4. {L(um)}m≥1 is tight in Z.
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Approximating solutions

By a generalized Skorokhod representation theorem, there exists a
new probability space (Ω∗,F∗,P∗), a sequence of Z-valued
random processes {u∗, um∗ ,m ≥ 1} and an H-cylindrical Brownian
motion W ∗ such that

P∗ ◦ (um∗ ,W
∗)−1 = P ◦ (um,W )−1 (8)

and that, taking a subsequence if necessary, limm→∞ um∗ = u∗ in Z,
P∗-a.s. Moreover, we have the following stronger convergence
result which will be used later.

Lemma 5. {un∗}n≥1 is a Cauchy sequence in probability in the
space X ∩ Y.
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Sketch of the proof

We can assume m > n. Set

An,∗
k (t) :=

(
un∗(t), ek(t)

)
t
. (9)

Let k ≤ n, we have

Am,∗
k (t)− An,∗

k (t)

=
n∑

j=1

∫ t

0

(
Am,∗
j (s)− An,∗

j (s)
)
bjk(s)ds +

m∑
j=n+1

∫ t

0
Am,∗
j (s)bjk(s)ds

+

∫ t

0
λk(s)

(
Am,∗
k (s)− An,∗

k (s)
)
ds

+

∫ t

0

(
ek(s),

(
σ
(
s, um∗ (s)

)
− σ

(
s, un∗(s)

))
dW ∗

s

)
.
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Sketch of the proof

The following relationship holds.

∣∣um∗ (t)− un∗(t)
∣∣2
t

=
n∑

k=1

∣∣Am,∗
k (t)− An,∗

k (t)
∣∣2 +

m∑
k=n+1

∣∣Am,∗
k (t)

∣∣2,
(10)

∥∥um∗ (t)− un∗(t)
∥∥2
t

= −
n∑

k=1

λk(t)
∣∣Am,∗

k (t)− An,∗
k (t)

∣∣2
−

m∑
k=n+1

λk(t)
∣∣Am,∗

k (t)
∣∣2.
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Sketch of the proof

The proof of this lemma is divided into two steps.
Step 1. We will prove that

sup
0≤t≤T

n∑
k=1

|Am,∗
k (t)− An,∗

k (t)|2 − 2
n∑

k=1

∫ T

0
λk(s)

(
Am,∗
k (s)− An,∗

k (s)
)2
ds

→ 0 (11)

in probability as m, n→∞.

For l ≥ 1, denote a time-dependent orthogonal projection by

Ps
l

(
u(s)

)
=

l∑
i=1

(
u(s), ei (s)

)
s
ei (s).
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Sketch of the proof

By Itô’s formula,
n∑

k=1

|Am,∗
k (t)− An,∗

k (t)|2 − 2
n∑

k=1

∫ t

0
λk(s)

(
Am,∗
k (s)− An,∗

k (s)
)2
ds

= 2
n∑

k=1

n∑
j=1

∫ t

0

(
Am,∗
j (s)− An,∗

j (s)
)
bjk(s)

(
Am,∗
k (s)− An,∗

k (s)
)
ds

+ 2
n∑

k=1

m∑
j=n+1

∫ t

0
Am,∗
j (s)bjk(s)

(
Am,∗
k (s)− An,∗

k (s)
)
ds

+ 2

∫ t

0

(
Ps
n

(
um∗ (s)− un∗(s)

)
,
(
σ
(
s, um∗ (s)

)
− σ

(
s, un∗(s)

))
dW ∗

s

)

+

∫ t

0

n∑
k=1

∞∑
j=1

∣∣σkj (s, um∗ (s)
)
− σkj

(
s, un∗(s)

)∣∣2ds
=: Imn (t) + IImn (t) + IIImn (t) + IVm

n (t). (12)
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Sketch of the proof

Since bjk(s) = −bkj(s),

Imn (t) = 0. (13)

For the second term, we have∣∣∣IImn (t)
∣∣∣

= 2
∣∣∣ n∑
k=1

m∑
j=n+1

∫ t

0
Am,∗
j (s)

a′s
as
· 2jk

j2 − k2
(
Am,∗
k (s)− An,∗

k (s)
)
(−1)j+kds

∣∣∣
= 2
∣∣∣ ∫ t

0

n∑
k=1

m∑
j=n+1

Am,∗
j (s)jπ

as
·
(
Am,∗
k (s)− An,∗

k (s)
)
kπ

as

· 2asa
′
s

π2(j2 − k2)
(−1)j+kds

∣∣∣
≤ · · ·
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Sketch of the proof

≤ 2

∫ t

0
‖um∗ (s)‖s

(
−

n∑
k=1

∣∣Am,∗
k (s)− An,∗

k (s)
∣∣2λk(s)

) 1
2

×
( m∑

j=n+1

n∑
k=1

1

(j2 − k2)2

) 1
2 · 2|a′s |as

π2
ds

≤ 2

∫ t

0
‖um∗ (s)‖s‖um∗ (s)− un∗(s)‖s

( m∑
j=n+1

n∑
k=1

1

(j2 − k2)2

) 1
2 · 2|a′s |as

π2
ds

≤ 4L2

π2

 m∑
j=n+1

n∑
k=1

1

(j2 − k2)2

 1
2

‖um∗ ‖Y‖um∗ − un∗‖Y.
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Sketch of the proof

We have

E ∗
[

sup
0≤t≤T

∣∣∣IImn (t)
∣∣∣] ≤ 2C1CK ,L

( m∑
j=n+1

n∑
k=1

1

(j2 − k2)2

) 1
2
.

Now, setting l = n + 1− k , we see that

m∑
j=n+1

n∑
k=1

1

(j2 − k2)2
=

m∑
j=n+1

n∑
k=1

1

(j + k)2(j − k)2

≤
m∑

j=n+1

1

j2

n∑
k=1

1

(j − k)2

≤
m∑

j=n+1

1

j2

n∑
l=1

1

l2
→ 0 as m, n →∞.
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Sketch of the proof

It follows that

E ∗
[

sup
0≤t≤T

∣∣∣IImn (t)
∣∣∣]→ 0 as m, n →∞.

In particular,

sup
0≤t≤T

∣∣∣IImn (t)
∣∣∣→ 0 in probability as m, n→∞. (14)
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Sketch of the proof

We can also show that

sup
0≤t≤T

∣∣∣IIImn (t)
∣∣∣, sup

0≤t≤T

∣∣∣IVm
n (t)

∣∣∣→ 0 (15)

in probability as m, n→ ∞. Putting the above convergence
together, we obtain that

sup
0≤t≤T

n∑
k=1

|Am,∗
k (t)− An,∗

k (t)|2 − 2
n∑

k=1

∫ T

0
λk(s)

∣∣Am,∗
k (s)− An,∗

k (s)
∣∣2ds

→ 0

as m, n→∞ in probability.
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Sketch of the proof

Step 2. We prove that the remaining terms also tend to zero, i.e.,

sup
0≤t≤T

m∑
k=n

|Am,∗
k (t)|2 − 2

m∑
k=n

∫ T

0
λk(s)

∣∣Am,∗
k (s)

∣∣2ds → 0 (16)

as m, n→∞ in probability.

Combining step 1 and step 2, we see that {un∗}n≥1 is a Cauchy
sequence in probability in the space X ∩ Y. Hence, we can assume
that u∗ ∈ X ∩ Y and there exists a subsequence nk such that
limk→∞ unk∗ = u∗ in X ∩ Y a.s.
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Sketch of the proof of the main result

The limit u∗(t, x) obtained above admits the following expansion

u∗(t, x) =
∞∑
k=1

A∗k(t)ek(t, x), (17)

where the series converges in X. Now we will show that u∗ is
indeed a solution of the stochastic heat equation (1). Passing to
the limit, we can show that the stochastic processes A∗k , k ≥ 1
satisfy the following infinite dimensional system: for any k ≥ 1 and
t ≥ 0, a.s.

A∗k(t)− (u0, ek(0))0 −
∞∑
j=1

∫ t

0
A∗j (s)bjk(s)ds (18)

=

∫ t

0
λk(s)A∗k(s)ds +

∫ t

0

(
ek(s), σ

(
s, u∗(s)

)
dW ∗

s

)
.
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Sketch of the proof of the main result

Proposition 6 The random field u∗ obtained above is a solution to
the stochastic heat equation (1), namely, for all t ∈ [0,T ] and
ϕ ∈ C∞0 (ŌT ),∫ at

0
u∗(t, x)ϕ(t, x)dx −

∫ a0

0
u0(x)ϕ(0, x)dx

−
∫ t

0

∫ as

0
u∗(s, x)ϕ′(s, x)dxds

=

∫ t

0

∫ as

0
u∗(s, x)∆ϕ(s, x)dxds +

∫ t

0

(
ϕ(s), σ

(
s, u∗(s)

)
dW ∗

s

)
a.s.

(19)
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Sketch of the proof of the main result

Let ϕ be a test function, i.e. ϕ ∈ C∞0 (ŌT ) and define
ϕk(s) :=

(
ϕ(s), ek(s)

)
s
. Since ek(s, x) and ϕ(s, x) vanish at the

boundary of Is , we have

dϕk(s) =
(
ϕ′(s), ek(s)

)
s
ds +

(
ϕ(s), e ′k(s)

)
s
ds,

and

ϕkA
∗
k(t)

= ϕk(u0, ek(0))0 +

∫ t

0
ϕk(s)

(
u∗(s), e ′k(s)

)
s
ds +

∫ t

0
λk(s)ϕk(s)A∗k(s)ds

+

∫ t

0

(
ϕk(s)ek(s), σ

(
s, u∗(s)

)
dW ∗

s

)
+

∫ t

0
A∗k(s)

(
ϕ′(s), ek(s)

)
s
ds

+

∫ t

0
A∗k(s)

(
ϕ(s), e ′k(s)

)
s
ds

= Ik + IIk(t) + IIIk(t) + IVk(t) + Vk(t) + VIk(t). (20)
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Sketch of the proof of the main result

Recall
(
u∗(t), ϕ(t)

)
t

=
∞∑
k=1

ϕkA
∗
k(t). Adding up (20) to an

arbitrarily big natural number n and then letting n→∞, we
obtain

(i)
∞∑
k=1

Ik =
(
ϕ(0), u(0)

)
0
,

(ii)
∞∑
k=1

IIIk(t) =

∫ t

0
∆ϕ(s)u∗(s)ds a.s.,

Tusheng Zhang Stochastic heat equations on moving domains



Sketch of the proof of the main result

(iii)

∞∑
k=1

IVk(t) =

∫ t

0

(
ϕ(s), σ

(
s, u∗(s)

)
dW ∗

s

)
in probability,

(iv)
∞∑
k=1

Vk(t) =

∫ t

0

(
ϕ′(s), u∗(s)

)
s
ds in L2(Ω∗).
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Sketch of the proof of the main result

On the other hand, we note that

IIk(t) =

∫ t

0
ϕk(s)

(
u∗(s), e ′k(s)

)
s
ds =

∫ t

0
ϕk(s)

∞∑
j=1

A∗j (s)bjk(s)ds.

VIk(t) =

∫ t

0
A∗k(s)

(
ϕ(s), e ′k(s)

)
s
ds =

∫ t

0
A∗k(s)

∞∑
j=1

ϕj(s)bjk(s)ds.

Since {bjk(s)}j ,k is skew-symmetric with respect to (j , k), we see
that

∞∑
k=1

IIk(t) +
∞∑
k=1

VIk(t) = 0.
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Sketch of the proof of the main result

The interchange of the infinite sum with the integral can be
justified because we can show that

E ∗
[ ∫ T

0

∑
k,j

∣∣ϕk(s)
∣∣∣∣A∗j (s)

∣∣∣∣bjk(s)
∣∣ds] (21)

= E ∗
[ ∫ t

0

∑
k 6=j

∣∣ϕk(s)
∣∣ k

|as |
∣∣A∗j (s)

∣∣ j

|as |
|as ||a′s |
|j2 − k2|

ds
]

≤ CE ∗
[ ∫ t

0

∥∥ϕ(s)
∥∥2
s
ds
] 1

2
E ∗
[ ∫ t

0

∥∥u∗(s)
∥∥2
s
ds
] 1

2

< ∞.
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Sketch of the proof of the main result

Putting the above equations together we finally arrive at∫ at

0
u∗(t, x)ϕ(t, x)dx −

∫ a0

0
u0(x)ϕ(0, x)dx

−
∫ t

0

∫ as

0
u∗(s, x)ϕ′(s, x)dxds

=

∫ t

0

∫ as

0
u∗(s, x)∆sϕ(s, x)dxds +

∫ t

0

(
ϕ(s), σ

(
s, u∗(s)

)
dW ∗

s

)
H
a.s.,

(22)

completing the proof.
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Sketch of the proof of the main result

Next result is an energy identity/Itô-type formula for the solution
which will be used to prove the pathwise uniqueness.
Proposition 7. Let (Ω̃, F̃ , {F̃t}t≥0, P̃, W̃ , ũ) be a solution to
equation (1). We have

|ũ(t)|2t = |u(0)|20 − 2

∫ t

0
‖ũ(s)‖2sds + 2

∫ t

0

(
ũ(s), σ

(
s, ũ(s)

)
dW̃s

)
+

∫ t

0

∞∑
k=1

∞∑
j=1

∣∣σkj (s, ũ(s)
)∣∣2ds

= |u(0)|20 − 2

∫ t

0
‖ũ(s)‖2sds + 2

∫ t

0

(
ũ(s), σ

(
s, ũ(s)

)
dW̃s

)
+

∫ t

0

∥∥σ(s, ũ(s)
)∥∥2

HS
ds.
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Sketch of the proof of the main result

Here is the uniqueness of the solution.
Theorem 8. The solution of the stochastic heat equation (1) is
pathwise unique in the space X ∩ Y.

Completion of the proof of the main result
Proposition 7 gives the existence of a probabilistic weak solution.
Now The main result follows from the pathwise uniqueness proved
in Theorem 8 and the well-known Yamada-Watanabe theorem.
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Sketch of the proof of the main result

Given the existence of a unique solution u of equation (1), the next
result shows that the solution u can be approximated by solutions
un(t) of the finite dimensional systems (6) or (7).

Proposition 9. The solutions {un}n≥1 of the finite-dimensional
interacting systems in (6) converge to u in L2(Ω;X∩Y) as n→∞.
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Future work

I The regularity of the solution as a function of the space and
time, e.g., the Holder continuity, differentiability etc

I The long time behavior of the solution, i.g., existence of
stationary solution, ergodicity etc
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